Rabu, 11 Februari 2015

Vanderkluysen 2014 Komposisi dan pelepasan ledakan gas pada Lusi mud volcano (2)

LUSI LIBRARY FILE 2015
Tinjauan dalam bahasa Indonesia
Dikontribusikan oleh Dr. Hardi Prasetyo


Vanderkluysen 2014 (2)


Komposisi dan pelepasan ledakan gas pada
Lusi mud volcano    (Java Timur, Indonesia)

Composition and flux of explosive gas release at LUSI mudvolcano (East Java, Indonesia)

Loyd Vanderkluysen, Michael R. Burton, Amanda B. Clarke, Hilairy E. Hartnett and Jean-Francois Smekens
Geochemistry, Geophysics, Geosystems 10.1002/2014GC005275
VANDERKLUYSEN ET AL. VC 2014. American Geophysical Union



Pendahuluan: Mud volkanisme

Pemahaman umum mud volkanisme
Volkanisme lumpur adalah fenomena di seluruh dunia (Mud volcanism is a worldwide phenomenon).
Biasanya terjadi dalam hubungan dengan cekungan yang mengandung hidrokarbon (hidrokarbon-bearing basin), yang berada pada kedudukan tektonik kompresi (in compressional tectonic settings).

Kejadian mud volcano: Struktur pembubungan berakar pada sedimen overpressure berkedudukan dalam 
Gunung lumpur secara klasik dipahami sebagai ekspresi permukaan struktur pembubungan (Mud volcanoes are classically understood as the surface expression of piercement structures).
Yang berakar pada sedimen overpressured berkedudukan dalam (rooted in deep-seated overpressured sediments)  [misalnya, Bishop, 1978; Brown, 1990; Kopf, 2002].

Asal usul cairan yang kompek diusur komposisi kima dan isotop
 Pada skala global, kisaran dalam komposisi kimia dan isotop diukur dalam cairan yang dikeluarkan pada gunung lumpur (the range in chemical and isotopic compositions measured in fluids released at mud volcanoes).
Dimana telah mencerminkan berbagai kompleksitas dari sumber cairannya (reflects the complex variety of their fluid sources).

Kombinasi sumber cairan:
Sumber cairan ini sering melibatkan kombinasi (These fluid sources often involve a combination):
·        air permukaan dan air laut (surface waters and seawater),
·        cairan sedimen pori (sediment pore fluids),
·        gas termogenik dan biogenik (thermogenic and biogenic gases),
·        hidrotermal dan masukan vulkanik (hydrothermal and volcanic inputs), dan
·        mantel yang mendalam atau volatil kerak (deep-seated mantle or crustal volatiles)
[misalnya, Dimitrov, 2002; Kopf dan Deyhle, 2002; Kopf et al., 2003; Anda et al., 2004; Mazzini et al, 2007, 2012.; Lichtschlag et al., 2010].

Kontribusi pelepasan fluida yang signifikan dari litosfer ke hydrosfer dan “asmospheric budget”
Dalam konteks yang luas, pelepasan cairan dari lumpur vulkanik diperkirakan menjadi kontributor yang signifikan ((In a broad context, the release of fluids from mud volcanism is estimated to be a significant contributor).
Baik untuk masukan cairan dari litosfer ke hidrosfer, dan anggaran atmosfer beberapa gas rumah kaca, khususnya metana (to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases ) [misalnya, Henry et al., 1996; Kopf dan Behrmann, 2000; M € Orner dan Etiope, 2002; Etiope et al., 2002; Kopf, 2003; Etiope 2005].
Pelepasan cairan dengan berulang terjadi di beberapa tempat
Pelepasan cairan di gunung lumpur selama episode ledakan yang berulang (The release of fluids at mud volcanoes during repeated explosive episodes).
Telah didokumentasikan di berbagai lokasi (has been documented at numerous sites) [misalnya, Higgins dan Saunders, 1974; Guliev, 1992; Chigira dan Tanaka, 1997; Hovland et al., 1997; Mellors et al., 2007; Deville dan Guerlais, 2009; Manga et al, 2009.; Mazzini et al, 2009.; Deville et al, 2010].

Asal mula ledakan bersiklus terus dipelajari
Walaupun studi terhadap asal mula ledakan bersiklus  sampai saat ini masih sedang berlangsung (though the origin of the explosive cyclicity is a matter of ongoing study ) [misalnya, Murton dan Biggs, 2003.; Zoporowski dan Miller, 2009].

Tipe semburan mud volcano
 Biasanya, semburan lumpur panas berlangsung beberapa hari, sebelum kembali ke fase dormansi atau tenang (Typically, mud volcano eruptions last several days before returning to a phase of dormancy) [misalnya, Shnyukov et al., 1986; Aliyev et al., 2002; Deville dan Guerlais, 2009].

Rangkuman Hal-hal Penting:
Seperti apa kegiatan di Geyser Lusi. Dimana yang umum diawali dengan mud kick atau mud bubble, baik yang dapat dilihat dengan mata atau tidak?

Pecahnya gelembung secara periodik dengan diameter 3m
Kegiatan gunung lumpur LUSI (Lusi mud volcano) didominasi oleh pecahnya gelembung dengan diameter sekitar 3 m secara periodik (periodic bursting of bubbles).

Memicu air mancur lumpur tinggi 10m, siklus 1-3 menit:
Dimana telah memicu air mancur lumpur (trigger mud fountains) dengan tinggi 10 m, dan memiliki panjang periode diam reguler (regular quiescent periods)  sekitar 1-3 menit.

Apa Komposisi gas telah dilepaskan selama ledakan gelembung lumpur?
 terdiri dari 98 % uap air, 1,5% karbon dioksida, dan 0,5 %  mol metana ((98 mol % water vapor, 1.5 mol % carbon dioxide, and 0.5 mol % methane)

Apakah selama masa diam ada gas yang dipaparkan?
selama fase diam  (quiescent intervals) tidak ada fluks gas yang dideteksi (there is no detectable gas flux).

Berapa total gas pertahun yang dilepaskan ke atmosfer?
 LUSI melepaskan gas ke atmosfer sekitar 800.000 ton/tahun uap air (water vapor),  30.000 ton/tahun CO2, dan 2.300 ton/tahun metana (methane).
Berapa batas aliran slug lumpur-air?

batas atas fluks lumpur-air pada 100.000M3/h (gas-flux measurements place an upper-bound on orresponding mud-water flux at 10 5 m3d.).

Apakah gelembung karbon dioksida dan metana berasal dari sistem dangkal atau dalam?
Gelembung karbon dioksida dan metana berada pada sistem dalam yang berkisar ratusan hingga ribuan meter (carbon dioxide and methane bubbles ucleate deep in the system (hundreds to thousands of meters deep).

Apakah mekanisme pengendali pemecahan gelembung gas?
Pendidihan decompressional air dalam sistem  (is decompressional boiling of the water in the system).
Berawal pada puluhan meter di bawah permukaan (initiates tens of meters below the surface).
Sebagai pengendali mekanisme utama untuk aktivitas pemecahan gelembung bersiklus (the primary driving mechanism for the observed cyclic bubble-bursting activity)

Acknowledgments
We thank Badan Penanggulangan Lumpur Sidoarjo (BPLS) for providing generous field help and access to the LUSI site, and particularly Pak Hardi Prasetyo and Pak Soffian Hadi Joyopranoto.
We are grateful to ananonymous reviewer for helpful comments. We thank S. Carn for lending us an IR source, R. Wright for use of a FLIR, G. Marliyani for help inthe field, and T. Esposti Ongaro for helpful discussions.
We also acknowledge the Exploration Postdoctoral Fellowship program at ASU and the Bakrie Initiative in Geological Hazards at ASU (funded by Minarak Labuan Co.) for financial support. We report no conflict between our scientific objectives and the interests of our funding sources.
Hewitt, G. F., and D. N. Roberts (1969), Studies of two-phase flow patterns by simultaneous X-ray and flash photography,U.K. At. EnergyRes. Estab. Tech. Rep. AERE-M 2159, 28 pp., Her Majesty’s Stn. Off., Harwell, U. K.

 References
Aiuppa, A., M. R. Burton, P. Allard, T. Caltabiano, G. Giudice, S. Gurrieri, M. Liuzzo, and G. Salerno (2011), First observational evidence for the CO2 -driven origin of Stromboli’s major explosions,Solid Earth, 2, 135–142, doi:10.5194/se-2-135-2011.
Aliyev, A., I. S. Guliyev, and I. S. Belov (2002),Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan, 87 pp., Nafta Press, Baku.
Allard, P., M. R. Burton, and F. Mure (2005), Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas,
Nature, 433(7024), 407–410, doi:10.1038/nature03246.
Ambrose, H. A., and A. G. Loomis (1935), Drilling well and well drilling fluid, Patent [1,999,147], U.S. Patent and Trademark Off., Washington,D. C.
Bishop, R. S. (1978), Mechanism for emplacement of piercement diapirs,AAPG Bull., 62, 1561–1583.
Blackburn, E. A., L. Wilson, and R. S. J. Sparks (1976), Mechanisms and dynamics of Strombolian activity,J. Geol. Soc. London, 132, 429–440, doi:10.1144/gsjgs.132.4.0429.
Blount, C. W., and L. C. Price (1982), Solubility of methane in water under natural conditions: A laboratory study, technical report DOE/ET/ 12145-1, Dep. of Energy, Dep. of Geol., Idaho State Univ., Pocatello.
Braun, T., and M. Ripepe (1993), Interaction of seismic and air waves recorded at Stromboli volcano,Geophys. Res. Lett., 20, 65–68, doi: 10.1029/92GL02543.
Brown, K. M. (1990), The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems,J. Geophys. Res., 95, 8969–8982, doi:10.1029/JB095iB06p08969.
Burton, M. R. (1998), Remote sensing of the atmosphere using Fourier transform spectrometry, PhD thesis, Univ. of Cambridge, Cambridge,U. K.
Burton, M. R., C. Oppenheimer, L. A. Horrocks, and P. W. Francis (2000), Remote sensing of CO2and H2O emission rates from Masaya volcano, Nicaragua,Geology, 28(10), 915–918, doi:10.1130/0091-7613(2000)28<915:RSOCAH>2.0.CO;2.
Burton, M. R., P. Allard, F. Mure, and A. La Spina (2007), Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity,Science, 37, 227–230, doi:10.1126/science.1141900.
Cederberg, C., U. Sonesson, M. Henriksson, V. Sund, and J. Davis (2009), Greenhouse gas emissions from Swedish production of meat, milk and eggs 1990 and 2005,SIK Rep. 793, Swed. Inst. for Food and Biotechnol., Gothenburg, Sweden.
Chigira, M., and K. Tanaka (1997), Structural features and the history of mud volcanoes in Southern Hokkaido, Northern Japan,J. Geol. Soc. Jpn., 103(8), 781–791.
Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De Luca, G. Milana, and R. Scarpa (2003), Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period data,J. Geophys. Res., 108(B1), 2019, doi:10.1029/2002JB001919.
Crovetto, R. (1991), Evaluation of solubility data of the system CO2-H2O from 273 K to the critical point of water,J. Phys. Chem. Ref. Data, 20(3), 575–589.
Davies, R. J., R. E. Swarbrick, R. J. Evans, and M. Huuse (2007), Birth of a mud volcano: East Java, 29 May 2006,GSA Today, 17, 4–9.
Davies, R. J., S. A. Mathias, R. E. Swarbrick, and M. J. Tingay (2011), Probabilistic longevity estimate for the LUSI mud volcano, East Java,J. Geol. Soc. London, 168(2), 517–523, doi:10.1144/0016–76492010-129.
Deville, E., and S.-H. Guerlais (2009), Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean),Mar. Pet. Geol., 26(9), 1681– 1691, doi:10.1016/j.marpetgeo.2009.03.002.
Deville, E., S.-H. Guerlais, S. Lallemant, and F. Schneider (2010), Fluid dynamics and subsurface sediment mobilization processes: An overview from Southeast Caribbean,Basin Res., 22(4), 341–621, doi:10.1111/j.1365-2117.2010.00474.x.
Dimitrov, L. I. (2002), Mud volcanoes—The most important pathway for degassing deeply buried sediments,Earth Sci. Rev., 59, 49–76, doi: 10.1016/S0012-8252(02)00069-7.
dos Ramos, M. C., F. J. Blas, and A. Galindo (2007), Phase equilibria, excess properties, and Henry’s constants of the water1carbon dioxide binary mixture,J. Phys. Chem. C, 111, 15,927–15,934, doi:10.1021/jp073716q.
Duffell, H., C. Oppenheimer, and M. R. Burton (2001), Volcanic gas emission rates measured by solar occultation spectroscopy,Geophys. Res. Lett., 28, 3131–3134, doi:10.1029/2000GL012425.
Etiope, G. (2005), Mud volcanoes and microseepage: The forgotten geophysical components of atmospheric methane budget,Ann. Geophys., 48(1), 1–7, doi:10.4401/ag-3175.
Etiope, G., A. Caracausi, R. Favara, F. Italiano, and C. Baciu (2002), Methane emission from the mud volcanoes of Sicily (Italy),Geophys. Res. Lett., 29(8), 1215, doi:10.1029/2001GL014340.
Faghri, A., and Y. Zhang (2006),Transport Phenomena in Multiphase Systems, 1030 pp., Elsevier, Burlington, Mass.
Francis, P., M. R. Burton, and C. Oppenheimer (1998), Remote measurements of volcanic gas compositions by solar occultation spectroscopy,Nature, 396(6711), 567–570, doi:10.1038/25115.
Guliev, I. S. (1992), A review of mud volcanism,Azerbaijan Acad. Sci. Rep., 65 pp., Inst. Geol., Baku.
Henry, P., et al. (1996), Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: Results from the Manon cruise,J. Geophys. Res., 101, 1978–2012, doi:10.1029/96JB00953.
Hewitt, G. F. (1998),Multiphase Fluid Flow and Pressure Drop, Heat Exchanger Design Handbook 2, 600 pp., Begell House, N. Y.
Higgins, G. E., and J. B. Saunders (1974), Mud volcanoes—Their nature and origin, inContributions to the Geology and Paleobiology of theCaribbean and Adjacent Areas. Dedicated to the 80th Birthday of Hans G. Kugler, Verhandlungen Naturforschenden Gesellschaft von Basel, vol. 84, edited by P. Jung et al., pp. 1–520, Naturforsch. Ges., Basel, Switzerland.
Hovland, M., A. Hill, and D. Stokes (1997), The structure and geomorphology of the Dashgil mud volcano, Azerbaijan,Geomorphology, 21, 1–15, doi:10.1016/S0169-555X(97)00034-2.
Jarne, C., S. T. Blanco, M. Artal, E. Rauzy, S. Otın, and I. Velasco (2004), Dew points of binary carbon dioxide1water and ternary carbon dioxide1water1methanol mixtures: Measurement and modelling,Fluid Phase Equilibria, 216, 85–93, doi:10.1016/j.fluid.2003.10.001.
Kementan-BPS (2011),Rilis Hasil Akhir PSPK 2011, 14 pp., Kementerian Pertanian, Badan Pusat Statistik, Jakarta.
Kopf, A. J. (2002), Significance of mud volcanism,Rev. Geophys., 40(2), 1005, doi:10.1029/2000RG000093.
Kopf, A. J. (2003), Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate,Int. J. Earth Sci.,
92, 806–816, doi:10.1007/s00531-003-0341-z.
Kopf, A. J., and J. H. Behrmann (2000), Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex, inFrom
the Arctic to the Mediterranean: Salt, Shale, and Igneous Diapirs in and Around Europe, Geol. Soc. London Spec. Publ. 174, edited by B. Vendeville et al., pp. 169–204, The Geological Society of London, U. K., doi:10.1144/GSL.SP.1999.174.01.10.
Kopf, A. J., and A. Deyhle (2002), Back to the roots: Boron geochemistry of mud volcanoes and its implications for mobilization depth and
global B cycling,Chem. Geol., 192(3–4), 195–210, doi:10.1016/S0009-2541(02)00221-8.
Kopf, A. J., A. Deyhle, V. Y. Lavrushin, B. G. Polyak, J. M. Gieskes, G. I. Buachidze, K. Wallmann, and A. Eisenhauer (2003), Isotopic evidence
(He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone,Int. J. Earth Sci., 92(3),
407–425, doi:10.1007/s00531-003-0326-y.
Lichtschlag, A., J. Felden, F. Wenzh€ ofer, F. Schubotz, T. F. Ertefai, A. Boetius, and D. de Beer (2010), Methane and sulfide fluxes in permanent
anoxia, In situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea),Geochim. Cosmochim. Acta, 74(17), 5002–5018,
doi:10.1016/j.gca.2010.05.031.
Love, S. P., F. Goff, D. Counce, C. Siebe, and H. Delgado (1998), Passive infrared spectroscopy of the eruption plume at Popocatepetl volcano, Mexico,Nature, 396(6711), 563–567, doi:10.1038/25109.
Lu, X., A. Watson, A. V. Gorin, and J. Deans (2005), Measurements in a low temperature CO2-driven geysering well, viewed in relation to natural geysers,Geothermics, 34, 389–410, doi:10.1016/j.geothermics.2005.05.001.
Manga, M., M. Brumm, and M. L. Rudolph (2009), Earthquake triggering of mud volcanoes,Mar. Pet. Geol., 26(9), 1785–1798, doi:10.1016/
j.marpetgeo.2009.01.019.
Mazzini, A., H. Svensen, G. G. Akhmanov, G. Aloisi, S. Planke, A. Malthe-Srenssen, and B. Istadi (2007), Triggering and dynamic evolution of
the LUSI mud volcano, Indonesia,Earth Planet. Sci. Lett., 261(3–4), 375–388, doi:10.1016/j.epsl.2007.07.001.
Mazzini, A., H. Svensen, S. Planke, I. Guliyev, G. G. Akhmanov, T. Fallik, and D. Banks (2009), When mud volcanoes sleep: Insight from seep
geochemistry at the Dashgil mud volcano, Azerbaijan,Mar. Pet. Geol., 26(9), 1704–1715, doi:10.1016/j.marpetgeo.2008.11.003.
Mazzini, A., G. Etiope, and H. Svensen (2012), A new hydrothermal scenario for the 2006 Lusi eruption, Indonesia. Insights from gas geochemistry,Earth Planet. Sci. Lett., 317–318, 305–318, doi:10.1016/j.epsl.2011.11.016.
Mellors, R., D. Kilb, A. Aliyev, A. Gasanov, and G. Yetirmishli (2007), Correlation between earthquakes and large mud volcano eruptions,J.
Geophys. Res., 112, B04304, doi:10.1029/2006JB004489.
Mori, T., and M. R. Burton (2009), Quantification of the gas mass emitted during single explosions on Stromboli with the SO2imaging camera,J. Volcanol. Geotherm. Res., 188(4), 395–400, doi:10.1016/j.jvolgeores.2009.10.005.
M€ orner, N.-A., and G. Etiope (2002), Carbon degassing from the lithosphere,Global Planet. Change, 33(1–2), 185–203, doi:10.1016/S0921-8181(02)00070-X.
Murton, B. J., and J. Biggs (2003), Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz,Mar.
Geol., 195(1–4), 223–236, doi:10.1016/S0025-3227(02)00690-4.
Oppenheimer, C., P. Francis, M. R. Burton, A. J. H. Maciejewski, and L. Boardman (1998), Remote measurement of volcanic gases by Fourier
transform infrared spectroscopy,Appl. Phys. B, 67(4), 505–515, doi:10.1007/s003400050536.
Richards, J. R. (2011),Report into the Past, Present and Future Social Impacts of Lumpur Sidoarjo, 162 pp., Humanitus Sidoarjo Fund,
Melbourne, Australia.
Ripepe, M., S. Ciliberto, and M. Della Schiava (2001), Time constraints for modeling source dynamics of volcanic explosions at Stromboli,J.
Geophys. Res., 106, 8713–8727, doi:10.1029/2000JB900374.
Rodgers, C. (2000),Inverse Methods for Atmospheric Sounding, Theory and Practice, Ser. Atm. Ocean. Planet. Phys., vol. 2, World Sci.,Singapore.
Rothman, L. S., et al. (1998), The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation), 1996 edition,J.
Quant. Spectrosc. Radiat. Transfer, 60, 665–710.
Sawolo, N., E. Sutriono, B. P. Istadi, and A. B. Darmoyo (2009), The LUSI mud volcano triggering controversy: Was it caused by drilling?,Mar.
Pet. Geol., 26(9), 1766–1784, doi:10.1016/j.marpetgeo.2009.04.002.
Schils, R. L. M., J. E. Olesen, A. del Prado, and J. F. Soussana (2007), A review of farm level modelling approaches for mitigating greenhouse
gas emissions from ruminant livestock systems,Livestock Sci., 112(3), 240–251, doi:10.1016/j.livsci.2007.09.005.
Settle, M., and T. R. McGetchin (1980), Statistical analysis of persistent explosive activity at Stromboli, 1971: Implications for eruption prediction,J. Volcanol. Geotherm. Res., 8, 45–58, doi:10.1016/0377-0273(80)90006-2.
Shnyukov, E. F., Y. V. Sobolevskiy, G. I. Gnatenko, P. I. Naumenko, and V. A. Kutniy (1986),Mud Volcanoes of Kerch-Taman Region[in Russian],
152 pp., Nauk. Dumka, Kiev.
Spycher, N., K. Pruess, and J. Ennis-King (2003), CO2-H2O mixtures in the geological sequestration of CO2. I: Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar,Geochim. Cosmochim. Acta, 67, 3015–3031, doi:10.1016/S0016-7037(03)00273-4.
Sutriono, E. (2007), Pemboran Sumur Eksplorasi Banjarpanji-1, paper presented at the International Geological Workshop on Sidoarjo Mud Volcano, Indonesia Agency for the Assess. and Appl. of Technol., Jakarta, 20–21 Feb.
Taitel, Y., D. Bornea, and A. E. Dukler (1980), Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes,AIChE J.,
26(3), 345–354, doi:10.1002/aic.690260304.
Thome, J. R. (2004),Engineering Data Book III, Wolverine Tube, Inc., Huntsville, Ala.
Tingay, M., O. Heidbach, R. Davies, and R. Swarbrick (2008), Triggering of the Lusi mud eruption: Earthquake versus drilling initiation,Geology, 36(8), 639–642, doi:10.1130/G24697A.1.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005275

VANDERKLUYSEN ET AL. VC 2014. American Geophysical Union.

Tidak ada komentar:

Posting Komentar