Tinjauan dalam bahasa Indonesia
Dikontribusikan oleh Dr. Hardi Prasetyo
Vanderkluysen
2014 (2)
Komposisi dan pelepasan ledakan gas pada
Lusi mud volcano (Java Timur, Indonesia)
Composition and flux of explosive gas release at LUSI
mudvolcano (East Java, Indonesia)
Loyd
Vanderkluysen, Michael R. Burton, Amanda B. Clarke, Hilairy E. Hartnett and
Jean-Francois Smekens
Geochemistry,
Geophysics, Geosystems 10.1002/2014GC005275
VANDERKLUYSEN
ET AL. VC 2014. American Geophysical Union
Pendahuluan: Mud
volkanisme
Pemahaman umum mud volkanisme
Volkanisme lumpur adalah fenomena di seluruh
dunia (Mud
volcanism is a worldwide phenomenon).
Biasanya terjadi dalam hubungan dengan
cekungan yang mengandung
hidrokarbon (hidrokarbon-bearing basin), yang berada pada kedudukan tektonik kompresi (in
compressional tectonic settings).
Kejadian mud volcano: Struktur pembubungan berakar
pada sedimen overpressure berkedudukan dalam
Gunung lumpur secara
klasik dipahami sebagai ekspresi permukaan struktur pembubungan (Mud volcanoes are classically
understood as the surface expression of piercement structures).
Yang berakar pada sedimen overpressured berkedudukan dalam (rooted in deep-seated overpressured
sediments) [misalnya, Bishop, 1978; Brown, 1990; Kopf,
2002].
Asal usul cairan yang kompek diusur komposisi kima dan
isotop
Pada skala global, kisaran dalam komposisi
kimia dan isotop diukur dalam cairan yang dikeluarkan pada gunung lumpur (the range in chemical and isotopic
compositions measured in fluids released at mud volcanoes).
Dimana telah mencerminkan
berbagai kompleksitas dari
sumber
cairannya (reflects the complex variety
of their fluid sources).
Kombinasi sumber cairan:
Sumber cairan ini sering
melibatkan kombinasi (These
fluid sources often involve a combination):
·
air permukaan dan air laut (surface
waters and seawater),
·
cairan sedimen pori (sediment
pore fluids),
·
gas termogenik dan biogenik (thermogenic
and biogenic gases),
·
hidrotermal dan masukan vulkanik (hydrothermal
and volcanic inputs),
dan
·
mantel yang mendalam atau volatil kerak (deep-seated mantle or crustal
volatiles)
[misalnya,
Dimitrov, 2002; Kopf dan Deyhle, 2002; Kopf et al., 2003; Anda et al., 2004;
Mazzini et al, 2007, 2012.; Lichtschlag et al., 2010].
Kontribusi pelepasan fluida yang signifikan dari
litosfer ke hydrosfer dan “asmospheric budget”
Dalam konteks yang luas,
pelepasan cairan dari lumpur vulkanik diperkirakan menjadi kontributor yang
signifikan ((In
a broad context, the release of fluids from mud volcanism is estimated to be a
significant contributor).
Baik untuk masukan cairan
dari litosfer ke hidrosfer, dan anggaran atmosfer beberapa gas rumah kaca,
khususnya metana (to fluid flux from the
lithosphere to the hydrosphere, and to the atmospheric budget of some
greenhouse gases ) [misalnya,
Henry et al., 1996; Kopf dan Behrmann, 2000; M € Orner dan Etiope, 2002; Etiope
et al., 2002; Kopf, 2003; Etiope 2005].
Pelepasan cairan dengan berulang terjadi di beberapa
tempat
Pelepasan cairan di gunung
lumpur selama episode ledakan yang berulang (The release of fluids at mud volcanoes
during repeated explosive episodes).
Telah didokumentasikan di berbagai lokasi
(has
been documented at numerous sites) [misalnya,
Higgins dan Saunders, 1974; Guliev, 1992; Chigira dan Tanaka, 1997; Hovland et
al., 1997; Mellors et al., 2007; Deville dan Guerlais, 2009; Manga et al,
2009.; Mazzini et al, 2009.; Deville et al, 2010].
Asal mula ledakan bersiklus
terus dipelajari
Walaupun studi
terhadap asal mula
ledakan bersiklus sampai saat ini masih sedang
berlangsung (though
the origin of the explosive cyclicity is a matter of ongoing study ) [misalnya, Murton dan Biggs, 2003.;
Zoporowski dan Miller, 2009].
Tipe semburan mud volcano
Biasanya, semburan lumpur panas berlangsung beberapa hari, sebelum
kembali ke fase dormansi atau tenang (Typically,
mud volcano eruptions last several days before returning to a phase of dormancy) [misalnya, Shnyukov et al., 1986;
Aliyev et al., 2002; Deville dan Guerlais, 2009].
Rangkuman Hal-hal
Penting:
Seperti apa
kegiatan di Geyser Lusi. Dimana yang umum diawali dengan mud kick atau mud
bubble, baik yang dapat dilihat dengan mata atau tidak?
Pecahnya gelembung secara
periodik dengan diameter 3m
Kegiatan gunung lumpur
LUSI (Lusi mud volcano) didominasi
oleh pecahnya gelembung dengan diameter
sekitar 3 m secara periodik (periodic bursting of bubbles).
Memicu air mancur lumpur
tinggi 10m, siklus 1-3 menit:
Dimana telah memicu air
mancur lumpur (trigger mud fountains)
dengan tinggi 10 m, dan memiliki panjang periode diam reguler (regular quiescent periods) sekitar 1-3 menit.
Apa Komposisi gas telah
dilepaskan selama ledakan gelembung lumpur?
terdiri dari 98 % uap air, 1,5% karbon
dioksida, dan 0,5 % mol metana ((98 mol % water vapor, 1.5 mol %
carbon dioxide, and 0.5 mol % methane)
Apakah selama masa diam
ada gas yang dipaparkan?
selama fase diam (quiescent
intervals) tidak ada fluks gas yang dideteksi (there is no detectable gas flux).
Berapa total gas pertahun
yang dilepaskan ke atmosfer?
LUSI melepaskan gas ke
atmosfer sekitar 800.000 ton/tahun uap air (water
vapor), 30.000 ton/tahun CO2, dan
2.300 ton/tahun metana (methane).
Berapa batas aliran slug
lumpur-air?
batas atas fluks
lumpur-air pada 100.000M3/h (gas-flux
measurements place an upper-bound on orresponding mud-water flux at 10 5 m3d.).
Apakah gelembung karbon
dioksida dan metana berasal dari sistem dangkal atau dalam?
Gelembung karbon dioksida
dan metana berada pada sistem dalam yang berkisar ratusan hingga ribuan meter (carbon dioxide and methane bubbles ucleate
deep in the system (hundreds to thousands of meters deep).
Apakah mekanisme
pengendali pemecahan gelembung gas?
Pendidihan decompressional
air dalam sistem (is decompressional boiling of the water in
the system).
Berawal pada puluhan meter
di bawah permukaan (initiates tens of
meters below the surface).
Sebagai pengendali
mekanisme utama untuk aktivitas pemecahan gelembung bersiklus (the primary driving mechanism for the
observed cyclic bubble-bursting activity)
Acknowledgments
We thank Badan
Penanggulangan Lumpur Sidoarjo (BPLS) for providing generous field help and
access to the LUSI site, and particularly Pak Hardi Prasetyo and Pak Soffian
Hadi Joyopranoto.
We are grateful to
ananonymous reviewer for helpful comments. We thank S. Carn for lending us an
IR source, R. Wright for use of a FLIR, G. Marliyani for help inthe field, and
T. Esposti Ongaro for helpful discussions.
We also acknowledge the
Exploration Postdoctoral Fellowship program at ASU and the Bakrie Initiative in
Geological Hazards at ASU (funded by Minarak Labuan Co.) for financial support.
We report no conflict between our scientific objectives and the interests of
our funding sources.
Hewitt, G. F., and D. N.
Roberts (1969), Studies of two-phase flow patterns by simultaneous X-ray and flash
photography,U.K. At. EnergyRes. Estab. Tech. Rep. AERE-M 2159, 28 pp., Her
Majesty’s Stn. Off., Harwell, U. K.
References
Aiuppa,
A., M. R. Burton, P. Allard, T. Caltabiano, G. Giudice, S. Gurrieri, M. Liuzzo,
and G. Salerno (2011), First observational evidence for the CO2 -driven origin
of Stromboli’s major explosions,Solid Earth, 2, 135–142,
doi:10.5194/se-2-135-2011.
Aliyev,
A., I. S. Guliyev, and I. S. Belov (2002),Catalogue of Recorded Eruptions of
Mud Volcanoes of Azerbaijan, 87 pp., Nafta Press, Baku.
Allard,
P., M. R. Burton, and F. Mure (2005), Spectroscopic evidence for a lava
fountain driven by previously accumulated magmatic gas,
Nature,
433(7024), 407–410, doi:10.1038/nature03246.
Ambrose,
H. A., and A. G. Loomis (1935), Drilling well and well drilling fluid, Patent
[1,999,147], U.S. Patent and Trademark Off., Washington,D. C.
Bishop,
R. S. (1978), Mechanism for emplacement of piercement diapirs,AAPG Bull., 62,
1561–1583.
Blackburn,
E. A., L. Wilson, and R. S. J. Sparks (1976), Mechanisms and dynamics of
Strombolian activity,J. Geol. Soc. London, 132, 429–440, doi:10.1144/gsjgs.132.4.0429.
Blount,
C. W., and L. C. Price (1982), Solubility of methane in water under natural
conditions: A laboratory study, technical report DOE/ET/ 12145-1, Dep. of
Energy, Dep. of Geol., Idaho State Univ., Pocatello.
Braun,
T., and M. Ripepe (1993), Interaction of seismic and air waves recorded at
Stromboli volcano,Geophys. Res. Lett., 20, 65–68, doi: 10.1029/92GL02543.
Brown,
K. M. (1990), The nature and hydrogeologic significance of mud diapirs and
diatremes for accretionary systems,J. Geophys. Res., 95, 8969–8982,
doi:10.1029/JB095iB06p08969.
Burton,
M. R. (1998), Remote sensing of the atmosphere using Fourier transform
spectrometry, PhD thesis, Univ. of Cambridge, Cambridge,U. K.
Burton,
M. R., C. Oppenheimer, L. A. Horrocks, and P. W. Francis (2000), Remote sensing
of CO2and H2O emission rates from Masaya volcano, Nicaragua,Geology, 28(10),
915–918, doi:10.1130/0091-7613(2000)28<915:RSOCAH>2.0.CO;2.
Burton,
M. R., P. Allard, F. Mure, and A. La Spina (2007), Magmatic gas composition
reveals the source depth of slug-driven Strombolian explosive activity,Science,
37, 227–230, doi:10.1126/science.1141900.
Cederberg,
C., U. Sonesson, M. Henriksson, V. Sund, and J. Davis (2009), Greenhouse gas
emissions from Swedish production of meat, milk and eggs 1990 and 2005,SIK Rep.
793, Swed. Inst. for Food and Biotechnol., Gothenburg, Sweden.
Chigira,
M., and K. Tanaka (1997), Structural features and the history of mud volcanoes
in Southern Hokkaido, Northern Japan,J. Geol. Soc. Jpn., 103(8), 781–791.
Chouet,
B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. De
Luca, G. Milana, and R. Scarpa (2003), Source mechanisms of explosions at
Stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period
data,J. Geophys. Res., 108(B1), 2019, doi:10.1029/2002JB001919.
Crovetto,
R. (1991), Evaluation of solubility data of the system CO2-H2O from 273 K to
the critical point of water,J. Phys. Chem. Ref. Data, 20(3), 575–589.
Davies,
R. J., R. E. Swarbrick, R. J. Evans, and M. Huuse (2007), Birth of a mud
volcano: East Java, 29 May 2006,GSA Today, 17, 4–9.
Davies,
R. J., S. A. Mathias, R. E. Swarbrick, and M. J. Tingay (2011), Probabilistic
longevity estimate for the LUSI mud volcano, East Java,J. Geol. Soc. London,
168(2), 517–523, doi:10.1144/0016–76492010-129.
Deville,
E., and S.-H. Guerlais (2009), Cyclic activity of mud volcanoes: Evidences from
Trinidad (SE Caribbean),Mar. Pet. Geol., 26(9), 1681– 1691, doi:10.1016/j.marpetgeo.2009.03.002.
Deville,
E., S.-H. Guerlais, S. Lallemant, and F. Schneider (2010), Fluid dynamics and
subsurface sediment mobilization processes: An overview from Southeast
Caribbean,Basin Res., 22(4), 341–621, doi:10.1111/j.1365-2117.2010.00474.x.
Dimitrov,
L. I. (2002), Mud volcanoes—The most important pathway for degassing deeply
buried sediments,Earth Sci. Rev., 59, 49–76, doi: 10.1016/S0012-8252(02)00069-7.
dos
Ramos, M. C., F. J. Blas, and A. Galindo (2007), Phase equilibria, excess
properties, and Henry’s constants of the water1carbon dioxide binary mixture,J.
Phys. Chem. C, 111, 15,927–15,934, doi:10.1021/jp073716q.
Duffell,
H., C. Oppenheimer, and M. R. Burton (2001), Volcanic gas emission rates
measured by solar occultation spectroscopy,Geophys. Res. Lett., 28, 3131–3134,
doi:10.1029/2000GL012425.
Etiope,
G. (2005), Mud volcanoes and microseepage: The forgotten geophysical components
of atmospheric methane budget,Ann. Geophys., 48(1), 1–7, doi:10.4401/ag-3175.
Etiope,
G., A. Caracausi, R. Favara, F. Italiano, and C. Baciu (2002), Methane emission
from the mud volcanoes of Sicily (Italy),Geophys. Res. Lett., 29(8), 1215,
doi:10.1029/2001GL014340.
Faghri,
A., and Y. Zhang (2006),Transport Phenomena in Multiphase Systems, 1030 pp.,
Elsevier, Burlington, Mass.
Francis,
P., M. R. Burton, and C. Oppenheimer (1998), Remote measurements of volcanic
gas compositions by solar occultation spectroscopy,Nature, 396(6711), 567–570,
doi:10.1038/25115.
Guliev,
I. S. (1992), A review of mud volcanism,Azerbaijan Acad. Sci. Rep., 65 pp.,
Inst. Geol., Baku.
Henry,
P., et al. (1996), Fluid flow in and around a mud volcano field seaward of the
Barbados accretionary wedge: Results from the Manon cruise,J. Geophys. Res.,
101, 1978–2012, doi:10.1029/96JB00953.
Hewitt,
G. F. (1998),Multiphase Fluid Flow and Pressure Drop, Heat Exchanger Design
Handbook 2, 600 pp., Begell House, N. Y.
Higgins,
G. E., and J. B. Saunders (1974), Mud volcanoes—Their nature and origin,
inContributions to the Geology and Paleobiology of theCaribbean and Adjacent
Areas. Dedicated to the 80th Birthday of Hans G. Kugler, Verhandlungen
Naturforschenden Gesellschaft von Basel, vol. 84, edited by P. Jung et al., pp.
1–520, Naturforsch. Ges., Basel, Switzerland.
Hovland,
M., A. Hill, and D. Stokes (1997), The structure and geomorphology of the
Dashgil mud volcano, Azerbaijan,Geomorphology, 21, 1–15,
doi:10.1016/S0169-555X(97)00034-2.
Jarne,
C., S. T. Blanco, M. Artal, E. Rauzy, S. Otın, and I. Velasco (2004), Dew
points of binary carbon dioxide1water and ternary carbon dioxide1water1methanol
mixtures: Measurement and modelling,Fluid Phase Equilibria, 216, 85–93,
doi:10.1016/j.fluid.2003.10.001.
Kementan-BPS
(2011),Rilis Hasil Akhir PSPK 2011, 14 pp., Kementerian Pertanian, Badan Pusat
Statistik, Jakarta.
Kopf,
A. J. (2002), Significance of mud volcanism,Rev. Geophys., 40(2), 1005,
doi:10.1029/2000RG000093.
Kopf,
A. J. (2003), Global methane emission through mud volcanoes and its past and
present impact on the Earth’s climate,Int. J. Earth Sci.,
92,
806–816, doi:10.1007/s00531-003-0341-z.
Kopf,
A. J., and J. H. Behrmann (2000), Extrusion dynamics of mud volcanoes on the
Mediterranean Ridge accretionary complex, inFrom
the
Arctic to the Mediterranean: Salt, Shale, and Igneous Diapirs in and Around
Europe, Geol. Soc. London Spec. Publ. 174, edited by B. Vendeville et al., pp.
169–204, The Geological Society of London, U. K., doi:10.1144/GSL.SP.1999.174.01.10.
Kopf,
A. J., and A. Deyhle (2002), Back to the roots: Boron geochemistry of mud
volcanoes and its implications for mobilization depth and
global
B cycling,Chem. Geol., 192(3–4), 195–210, doi:10.1016/S0009-2541(02)00221-8.
Kopf,
A. J., A. Deyhle, V. Y. Lavrushin, B. G. Polyak, J. M. Gieskes, G. I.
Buachidze, K. Wallmann, and A. Eisenhauer (2003), Isotopic evidence
(He,
B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus
continental collision zone,Int. J. Earth Sci., 92(3),
407–425,
doi:10.1007/s00531-003-0326-y.
Lichtschlag,
A., J. Felden, F. Wenzh€ ofer, F. Schubotz, T. F. Ertefai, A. Boetius, and D.
de Beer (2010), Methane and sulfide fluxes in permanent
anoxia,
In situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black
Sea),Geochim. Cosmochim. Acta, 74(17), 5002–5018,
doi:10.1016/j.gca.2010.05.031.
Love,
S. P., F. Goff, D. Counce, C. Siebe, and H. Delgado (1998), Passive infrared
spectroscopy of the eruption plume at Popocatepetl volcano, Mexico,Nature,
396(6711), 563–567, doi:10.1038/25109.
Lu,
X., A. Watson, A. V. Gorin, and J. Deans (2005), Measurements in a low
temperature CO2-driven geysering well, viewed in relation to natural
geysers,Geothermics, 34, 389–410, doi:10.1016/j.geothermics.2005.05.001.
Manga,
M., M. Brumm, and M. L. Rudolph (2009), Earthquake triggering of mud
volcanoes,Mar. Pet. Geol., 26(9), 1785–1798, doi:10.1016/
j.marpetgeo.2009.01.019.
Mazzini,
A., H. Svensen, G. G. Akhmanov, G. Aloisi, S. Planke, A. Malthe-Srenssen, and
B. Istadi (2007), Triggering and dynamic evolution of
the
LUSI mud volcano, Indonesia,Earth Planet. Sci. Lett., 261(3–4), 375–388,
doi:10.1016/j.epsl.2007.07.001.
Mazzini,
A., H. Svensen, S. Planke, I. Guliyev, G. G. Akhmanov, T. Fallik, and D. Banks
(2009), When mud volcanoes sleep: Insight from seep
geochemistry
at the Dashgil mud volcano, Azerbaijan,Mar. Pet. Geol., 26(9), 1704–1715,
doi:10.1016/j.marpetgeo.2008.11.003.
Mazzini,
A., G. Etiope, and H. Svensen (2012), A new hydrothermal scenario for the 2006
Lusi eruption, Indonesia. Insights from gas geochemistry,Earth Planet. Sci.
Lett., 317–318, 305–318, doi:10.1016/j.epsl.2011.11.016.
Mellors,
R., D. Kilb, A. Aliyev, A. Gasanov, and G. Yetirmishli (2007), Correlation
between earthquakes and large mud volcano eruptions,J.
Geophys.
Res., 112, B04304, doi:10.1029/2006JB004489.
Mori,
T., and M. R. Burton (2009), Quantification of the gas mass emitted during
single explosions on Stromboli with the SO2imaging camera,J. Volcanol.
Geotherm. Res., 188(4), 395–400, doi:10.1016/j.jvolgeores.2009.10.005.
M€
orner, N.-A., and G. Etiope (2002), Carbon degassing from the
lithosphere,Global Planet. Change, 33(1–2), 185–203,
doi:10.1016/S0921-8181(02)00070-X.
Murton,
B. J., and J. Biggs (2003), Numerical modelling of mud volcanoes and their
flows using constraints from the Gulf of Cadiz,Mar.
Geol.,
195(1–4), 223–236, doi:10.1016/S0025-3227(02)00690-4.
Oppenheimer,
C., P. Francis, M. R. Burton, A. J. H. Maciejewski, and L. Boardman (1998),
Remote measurement of volcanic gases by Fourier
transform
infrared spectroscopy,Appl. Phys. B, 67(4), 505–515, doi:10.1007/s003400050536.
Richards,
J. R. (2011),Report into the Past, Present and Future Social Impacts of Lumpur
Sidoarjo, 162 pp., Humanitus Sidoarjo Fund,
Melbourne,
Australia.
Ripepe,
M., S. Ciliberto, and M. Della Schiava (2001), Time constraints for modeling
source dynamics of volcanic explosions at Stromboli,J.
Geophys.
Res., 106, 8713–8727, doi:10.1029/2000JB900374.
Rodgers,
C. (2000),Inverse Methods for Atmospheric Sounding, Theory and Practice, Ser.
Atm. Ocean. Planet. Phys., vol. 2, World Sci.,Singapore.
Rothman,
L. S., et al. (1998), The HITRAN molecular spectroscopic database and HAWKS
(HITRAN Atmospheric Workstation), 1996 edition,J.
Quant.
Spectrosc. Radiat. Transfer, 60, 665–710.
Sawolo,
N., E. Sutriono, B. P. Istadi, and A. B. Darmoyo (2009), The LUSI mud volcano
triggering controversy: Was it caused by drilling?,Mar.
Pet.
Geol., 26(9), 1766–1784, doi:10.1016/j.marpetgeo.2009.04.002.
Schils,
R. L. M., J. E. Olesen, A. del Prado, and J. F. Soussana (2007), A review of
farm level modelling approaches for mitigating greenhouse
gas
emissions from ruminant livestock systems,Livestock Sci., 112(3), 240–251,
doi:10.1016/j.livsci.2007.09.005.
Settle,
M., and T. R. McGetchin (1980), Statistical analysis of persistent explosive
activity at Stromboli, 1971: Implications for eruption prediction,J. Volcanol.
Geotherm. Res., 8, 45–58, doi:10.1016/0377-0273(80)90006-2.
Shnyukov,
E. F., Y. V. Sobolevskiy, G. I. Gnatenko, P. I. Naumenko, and V. A. Kutniy
(1986),Mud Volcanoes of Kerch-Taman Region[in Russian],
152
pp., Nauk. Dumka, Kiev.
Spycher,
N., K. Pruess, and J. Ennis-King (2003), CO2-H2O mixtures in the geological
sequestration of CO2. I: Assessment and calculation of mutual solubilities from
12 to 100 C and up to 600 bar,Geochim. Cosmochim. Acta, 67, 3015–3031,
doi:10.1016/S0016-7037(03)00273-4.
Sutriono,
E. (2007), Pemboran Sumur Eksplorasi Banjarpanji-1, paper presented at the
International Geological Workshop on Sidoarjo Mud Volcano, Indonesia Agency for
the Assess. and Appl. of Technol., Jakarta, 20–21 Feb.
Taitel,
Y., D. Bornea, and A. E. Dukler (1980), Modelling flow pattern transitions for
steady upward gas-liquid flow in vertical tubes,AIChE J.,
26(3), 345–354,
doi:10.1002/aic.690260304.
Thome,
J. R. (2004),Engineering Data Book III, Wolverine Tube, Inc., Huntsville, Ala.
Tingay,
M., O. Heidbach, R. Davies, and R. Swarbrick (2008), Triggering of the Lusi mud
eruption: Earthquake versus drilling initiation,Geology, 36(8), 639–642,
doi:10.1130/G24697A.1.
Geochemistry, Geophysics, Geosystems
10.1002/2014GC005275
VANDERKLUYSEN ET AL. VC 2014. American Geophysical
Union.
Tidak ada komentar:
Posting Komentar